Соединительные ткани, подготовка к ЕГЭ по биологии

Костные клетки

Родоначальные клетки костной и хрящевой тканей

Костные клетки имеют мезенхимальное (мезенхимное, мезодермальное) происхождение. Во взрослом организме они образуются из остеогенных стволовых клеток-предшественников, которые локализуются на границе между костью и хрящевой или костномозговой тканью. Дифференцируясь, они превращаются в остеобласты, а затем — остеоциты. Рост длинных трубчатых костей осуществляется путем энхондрального окостенения. Причем увеличение диафизов в ширину происходит только со стороны периоста, а метафизов — только со стороны эндооста. Процесс костной резорбции имеет, соответственно, обратное направление (Burne, 1971, 1976; Фриденштейн, Лалыкина, 1973).

Схема образования костной и хрящевой ткани, построенная на основании работ А.Я. Фриденштейна, Е.А. Лурия (1980), А.Я. Фриденштейна и др. (1999), И.Л. Черткова, О.А. Гуревич (1984), В.П. Шахова (1996). Н. Castro-Malaspina et al., (1980, 1982) с некоторыми модификациями, представлена на рисунке.

Схема остеогенеза, хондрогенеза и остеокластогенеза. СККХ — стволовая клетка костной и хрящевой ткани, СКК — стволовая клетка кроветворения, ПКПК — полипотентная клетка-предшественница кроветворной ткани, ПКХК — полипотентная клетка-предшественница для костной и хрящевой тканей, Б(У)КПКХ — би(уни)потентная клетка-предшественница костной и хрящевой ткани, КПКМ — клетка, переносящая кроветворное микроокружение, КОЕф — колониеобразующая единица фибробластов, У (Б) КПК (X, М, Г, Э, Мег, Т, В) — унипотентная (бипотентная) клетка-предшественница костной (хрящевой, макрфагальной, гранулоцитарной, эритроидной, мегакариоцитарной, Т и В-лимфоидной) ткани

Процесс образования костной ткани представляет собой сложный многоступенчатый процесс, при котором клетки различных гистогенетических линий проходят последовательную трансформацию путем пролиферации, дифференцировки и специализации с образованием композитной структуры, называемой костью.

При этом следует подчеркнуть, что если костная и хрящевая ткань формируется в эмбриогенезе из дорсального сомита мезодермы, то кроветворная ткань, из которой ведут свое происхождение остеокласты, — через стадию спланхнической мезодермы. По своему гистогенезу остеоциты и остеобласты ближе к соединительно-тканным, мышечным и кожным элементам, а остеокласты — к клеткам крови и эндотелию (Coalson, 1987). Наличие в остеокластобластомах эпителиальной и мышечной ткани, по-видимому, подтверждает эту точку зрения.

После расхождения направления развития остеохондрогенеза от гемопоэза в эмбриональном развитии, в зрелом организме процесс образования костных клеток осуществляется из более дифференцированного, фиксированного в тканях или циркулирующего незрелого стромального элемента (мезодермальной клетки, недифференцированного фибробласта, остеогенного предшественника или прекурсора) (Фриденштейн, Лурия, 1980; Альберст и др., 1994; Омельянченко и др., 1997). Наряду с наличием полипотентной стволовой клетки для костной и хрящевой ткани, существуют и более дифференцированные прекурсоры. СККХ имеют высокий пролиферативный потенциал, обладают полипотентностью. Они образуют, как минимум, костные и (или) хрящевые кариоциты, которые преимущественно находятся в G1-G2-стадии клеточного цикла (Фриденштейн, Лалыкина, 1977; Фриденштейн, Лурия, 1980; Фриденштейн и др., 1999; Чертков, Гуревич, 1984).

В культуре ткани in vivo и in vitro они образуют хрящевую или костную ткань, которая может быть представлена в форме колоний, обозначенных как колониеобразующие единицы фибробластов-КОЕф (Фриденштейн, Лурия, 1980). С помощью хромосомных и биохимических маркеров на радиационных химерах было показано, что КОЕф имеют клональную природу, отличную по своему происхождению от гемопоэтических клеток костного мозга, включая остеобласты и остеоциты (Чертков, Гуревич, 1984).

Нами в суспензионной культуре ткани костного мозга мышей линии Balb/c была изучена зависимость между количеством вводимых в среду кариоцитов и числом образовавшихся колоний. Для этого костный мозг вымывался в силиконизированную пробирку, суспендировался в D-MEM среде, содержащей 20% эмбриональной телячьей сыворотки, 40 мкг/мл гентамицина, 200 мМ, L-глютамина хепес и культивировался в течение 2-3 недель в пластиковых флаконах при 37 °С. Плотность посева составила от 104 до 107 клеток на мл.

Зависимость образования КОЕф при введении в культуру различного количества клеток костного мозга мышей линии Balb/c

Количество вводимых клеток Число образовавшихся колоний
10 4
10 5 12
10 6 27
10 7 31

Приведенные данные свидетельствуют о том, что в целом зависимость между количеством вводимых в культуру миелокариоцитов и КОЕф носит линейный характер, что еще раз подтверждает их клональное происхождение.

При трансплантации их под капсулу почки или под кожу, они обладают способностью формировать костную, либо хрящевую ткань.

Макроскопический препарат эктопической костной ткани, выросшей под капсулой почки после трансплантации в нее костного мозга стрессированных мышей F1(CBAxC57Bl). Слева — на верхнем полюсе органа отчетливо виден большой очаг костеобразования. Справа — контроль (костный мозг взят от нестрессированного животного)

Одним из свойств СККХ является то, что они сохраняют свои пролиферативные и дифференцировочные потенции при многократном переносе первоначальной культуры от одного донора к другому. По-видимому, повреждение генома на этом уровне приводит к образованию остеосарком.

В результате дифференцировки СККХ образуются более дифференцированные клетки-предшественники типа КПКХ (клетки предшественники для костной и хрящевой ткани) или БКПКХ (бипотентные), затем — УПКПК и УПКПХ (унипотентные для кости, либо хряща). Общей закономерностью для пула родоначальных клеток любой ткани, в том числе и костной, является постепенное снижение способности к самообновлению и пролиферации, утрате полипотентности, увеличению доли прекурсоров, находящихся в S-периоде клеточного цикла, повышению чувствительности к действию ростовых факторов, гормонов, цитокинов и других регуляторных молекул. Теоретически этот процесс может идти равномерно или скачкообразно. Из-за этого течение остеогенеза может идти в различных режимах, темпе, с образованием костной ткани качественно и количественно отличной по своим морфофункциональным свойствам. На наш взгляд, введение биоматериала в кость обязательно включит тот или иной путь развития остеогенных клеток. Однако работ, выполненных в этом чрезвычайно интересном направлении, мы, к сожалению, не обнаружили.

Читайте также:  Наша Клиника; медцентры в СПб и Ленобласти ВКонтакте

Если ПКПКХ обладают полипотентностью, то БКПКХ образуют хрящевую или костную ткань, УКПК — только кость, а УКПХ — хрящ. Следует отметить, что все категории родоначальных клеток представляют собой чрезвычайно гетерогенную популяцию, внутри которой морфофункциональные свойства варьируют в широком диапазоне. Кроме того, для каждой из стадий развития КП имеется значительное количество переходных форм, которые все еще не могут быть идентифицированы с помощью имеющихся технологий. Несмотря на то, что методы выявления стромальных и остеогенных клеток-предшественников были открыты еще в начале 70-х годов, явного прогресса в понимании их свойств, способов регуляции и роли в процессах ремоделирования костной ткани достигнуто не было (Фриденштейн, Лалыкина, 1973; Фриденштейн и др., 1999; Чертков, Гуревич, 1984; Стецулла, Девятов, 1987; Омельянченко и др., 1997).

Следует отметить, что стволовые и коммитированные клетки-предшественники костной и хрящевой тканей находятся под контролем локальных и дистантных регуляторных механизмов. В последнюю группу входят факторы, которые оказывают свое действие через нейроэндокринную, иммунную, ретикулоэндотелиальную, опиатную, NO и другие системы путем выработки или связывания дальноранговых мессенжеров (эстрогены, глюкокортикоиды, эндорфины, адреналин и т.п.). Локальные механизмы действуют через прямое изменение морфофункциональных свойств микроокружения костной ткани, межклеточные контакты, местную выработку цитокинов, медиаторов, коротко-живущих биоактивных веществ и т.п. Межклеточные взаимодействия относятся к морфогенетическим процессам, они контролируют дифференцировку, специализацию, морфообразование клеток в тканях и органах. Механизмы их реализации осуществляются с помощью позиционно-информационных и индукционных взаимодействиях. Они еще малоизученны. Тем не менее, согласно концепции о позиционной информации, в организме существует морфогенетическое поле. Оно контролируется с помощью экспрессии гомейозисных генов типа НOХ1, НOХ2, НОХЗ, НOХ4, НOХ7, заставляя клетки помнить не только место своей локализации, в соответствии с координатными осями, но и выполнять миссию, которую они должны осуществить в процессе своей жизни, например восстановление кости при ее повреждении. Считается, что в сохранении позиционной информации большую роль играют мезенхимальные элементы, в частности макрофаги, остеобласты, остеоциты, остеокласты, эндотелий и фибробласты (Gilbert, 1994).

Индукционные механизмы регулируют процессы пролиферации и дифференцировки самообновляющихся клеточных популяций с помощью цитокинов, ростовых факторов, различных метаболитов и короткоранговых мессенжеров, вплоть до прямых клеточных взаимодействий.

Особенностью выбора направления дифференцировки поли- и бипотентных остеогенных предшественников является то, что он в первую очередь зависит от парциального давления кислорода. Если это давление достаточно высоко, то костные прекурсоры развиваются в направлении остеогенеза, а если низкое, то напротив, образуют хрящевую ткань (Bassett, Herman, 1961). При этом следует помнить, что адекватное поступление кислорода к клеткам возможно только при наличии развитой сети микроциркуляторного русла: максимальная величина удаления костных прекурсоров не должна превышать 100 мкм (Хэм, Кормак, 1983).

Гаверсова система во взрослой кости постоянно обновляется. При этом всегда можно выделить несколько типов остеонов — эволюционирующих или развивающихся (5-10%), зрелых (50-75%), дегенерирующих или инволюционирующихся (10-20%), реконструирующихся (5-10%) и нежизнеспособных (5-10%).

Считается, что остеон (Гаверсова система) возникает только на основе туннеля, образующегося в результате действия моноцитов, макрофагов и остеокластов, заполняющегося изнутри концентрированными слоями костной ткани, формирующейся остеобластами и остеокластами (Хэм, Кормак, 1983). Следует отметить, что система остеонов представляет собой подвижную структуру, которая постоянно эволюционирует. Как это не парадоксально, работ, посвященных изучению кинетики остеонов, крайне мало. С помощью радионуклидных методов исследования было установлено, что годичная скорость замещения поверхностного слоя костной ткани составляет 5-10% (Harris, Heaney, 1969). По-видимому, и темп обновления остеонов имеет сходные параметры. Интересно, что диаметр остеонов в процессе развития не является постоянной величиной, а в течение всей своей жизни подвержен ряду последовательных изменений. Анализ литературных и собственных данных позволяет считать, что границы Гаверсовой системы, ограниченные линией цементации, у молодых, развивающихся и реконструирующихся остеонов составляют 80-150 мкм, зрелых — 120-300, а инволюцинирующих, дегенерирующих — менее 200 мкм. Если процесс образования остеонов протекает на границе надкостница/ кость, то вместо канала в начале формируется желобок, стенки которого выстланы остеогенными клетками, которые пролиферируют, формируя валик. Стенки этих клеточных выступов смыкаются, образуя полость, внутри которой, как правило, располагается не менее одной питающей артерии. Затем остеогенные клетки дифференцируются в остеобласты и остеоциты с формированием остеона. Предположения о том, что материал, используемый в травматологии, должен иметь диаметр пор равный размеру остеонов, высказывалось и ранее (Гюнтер и др., 1992). Однако этими авторами не был обоснован главный критерий, согласно которому размер пор должен соответствовать диаметру развивающихся, реконструирующихся, зрелых остеонов. При нарушении этого принципа в сторону увеличения или уменьшения диаметра пор полноценная костная ткань образовываться не будет. Иными словами, можно считать, что размер остеонов представляет собой важный морфообразующий фактор, который необходимо учитывать при создании искусственной костной ткани. Механизм этого феномена не совсем понятен. Он, вероятно, генетически запрограммирован в самих остеогенных клетках и является важным элементом костного микроокружения. Вместе с тем, следует подчеркнуть, что наряду с объемными характеристиками, например диаметром остеонов, при создании материалов необходимо учитывать и другие биологические принципы, речь о которых пойдет ниже.

Читайте также:  Перелом локтевого отростка EMC

А.В. Карпов, В.П. Шахов
Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики

Строение костной ткани

    24 января 2009 9946

Клетки костной ткани (кости):

Основными клетками в сформированной костной ткани являются остеоциты. Это клетки отростчатой формы с крупным ядром и слабовыраженной цитоплазмой (клетки ядерного типа). Тела клеток локализуются в костных полостях — лакунах, а отростки — в костных канальцах. Многочисленные костные канальцы, анастомозируя между собой, пронизывают всю костную ткань, сообщаясь с периваскулярными пространствами, и образуют дренажную систему костной ткани. В этой дренажной системе содержится тканевая жидкость, посредством которой обеспечивается обмен веществ не только между клетками и тканевой жидкостью, но и межклеточным веществом. Для ультраструктурной организации остеоцитов характерно наличие в цитоплазме слабовыраженной зернистой эндоплазматической сети, небольшого числа митохондрий и лизосомы, центриоли отсутствуют. В ядре преобладает гетерохроматин. Все эти данные свидетельствуют о том, что остеоциты обладают незначительной функциональной активностью, которая заключается в поддержании обмена веществ между клетками и межклеточным веществом. Остеоциты являются дефинитивными формами клеток и не делятся. Образуются они из остеобластов.

Остеобласты содержатся только в развивающейся костной ткани. В сформированной костной ткани (кости) они отсутствуют, но содержатся обычно в неактивной форме в надкостнице. В развивающейся костной ткани они охватывают по периферии каждую костную пластинку, плотно прилегая друг к другу, образуя подобие эпителиального пласта. Форма таких активно функционирующих клеток может быть кубической, призматической, угловатой. В цитоплазме остеобластов содержится хорошо развитая зернистая эндоплазматическая сеть и пластинчатый комплекс Гольджи, много митохондрий. Такая ультраструктурная организация свидетельствует о том, что эти клетки являются синтезирующими и секретирующими.

Действительно, остеобласты синтезируют белок коллаген и гликозоаминогликаны, которые затем выделяют в межклеточное пространство. За счет этих компонентов формируется органический матрикс костной ткани. Затем эти же клетки обеспечивают минерализацию межклеточного вещества посредством выделения солей кальция. Постепенно, выделяя межклеточное вещество, они как бы замуровываются и превращаются в остеоциты. При этом внутриклеточные органеллы в значительной степени редуцируются, синтетическая и секреторная активность снижается и сохраняется функциональная активность, свойственная остеоцитам. Остеобласты, локализующиеся в камбиальном слое надкостницы, находятся в неактивном состоянии, синтетические и транспортные органеллы слабо развиты. При раздражении этих клеток (в случае травм, переломов костей и так далее) в цитоплазме быстро развивается зернистая эндоплазматическая сеть и пластинчатый комплекс, происходит активный синтез и выделение коллагена и гликозоаминогликанов, формирование органического матрикса (костная мозоль), а затем и формирование дефинитивной костной ткани (кости). Таким способом за счет деятельности остеобластов надкостницы, происходит регенерация костей при их повреждении.

Отеокласты — костеразрушающие клетки, в сформированной костной ткани отсутствуют. Но содержатся в надкостнице и в местах разрушения и перестройки костной ткани. Поскольку в онтогенезе непрерывно осуществляются локальные процессы перестройки костной ткани, то в этих местах обязательно присутствуют и остеокласты. В процессе эмбрионального остеогистогенеза эти клетки играют важную роль и определяются в большом количестве.

Остеокласты имеют характерную морфологию:

* эти клетки являются многоядерными (3-5 и более ядер);

* это довольно крупные клетки (диаметром около 90 мкм);

* они имеют характерную форму — клетка имеет овальную форму, но часть ее, прилежащая к костной ткани, является плоской.

При этом в плоской части выделяют две зоны:

* центральная часть — гофрированная, содержит многочисленные складки и островки;

* периферическая (прозрачная) часть тесно соприкасается с костной тканью.

В цитоплазме клетки, под ядрами, располагаются многочисленные лизосомы и вакуоли разной величины. Функциональная активность остеокласта проявляется следующим образом: в центральной (гофрированной) зоне основания клетки из цитоплазмы выделяются угольная кислота и протеолитические ферменты. Выделяющаяся угольная кислота вызывает деминерализацию костной ткани, а протеолитические ферменты разрушают органический матрикс межклеточного вещества. Фрагменты коллагеновых волокон фагоцитируются остеокластами и разрушаются внутриклеточно. Посредством этих механизмов происходит резорбция (разрушение) костной ткани и потому остеокласты обычно локализуются в углублениях костной ткани. После разрушения костной ткани за счет деятельности остеобластов, выселяющихся из соединительной ткани сосудов, происходит построение новой костной ткани.

Межклеточное вещество костной ткани состоит из:

* и волокон, в которых содержатся соли кальция.

Волокна состоят из коллагена I типа и складываются в пучки, которые могут располагаться параллельно (упорядочено) или неупорядочено, на основании чего и строится гистологическая классификация костных тканей.

Основное вещество костной ткани, как и других разновидностей соединительных тканей, состоит из:

Однако химический состав этих веществ отличается. В частности в костной ткани содержится меньше хондроитинсерных кислот, но больше лимонной и других кислот, которые образуют комплексы с солями кальция. В процессе развития костной ткани вначале образуется органический матрикс-основное вещество и коллагеновые (оссеиновые, коллаген II типа) волокна, а затем уже в них откладываются соли кальция (главным образом фосфорнокислые). Соли кальция образуют кристаллы гидроксиаппатита, откладывающиеся как в аморфном веществе, так и в волокнах, но небольшая часть солей откладывается аморфно. Обеспечивая прочность костей, фосфорнокислые соли кальция одновременно являются депо кальция и фосфора в организме. Поэтому костная ткань принимает участие в минеральном обмене.

Читайте также:  Строение бедренной кости - анатомия человека изнутри Анатомия

К сведению в организме (литературные данные):

1. От 208 до 214 индивидуальных костей.

2. Нативная кость состоит из 50% неорганического материала, 25% органических веществ и 25% воды, связанной с коллагеном и протеогликанами.

3. 90% органики составляет коллаген типа 1 и только 10% другие органические молекулы ( гликопротеин остеокальцин, остеонектин, остеопонтин, костный сиалопротеин и другие пртеогликаны).

4. Костные компоненты представлены : органическим матриксом — 20-40%, неорганическими минералами – 50-70%, клеточными элементами 5-10% и жирами – 3%.

5. Макроскопически скелет состоит из двух компонентов – компактная или кортикальная кость; и сетчатая или губчатая кость.

6. В среднем вес скелета составляет 5 кг ( вес сильно зависит от возраста, пола, строения тела и роста).

7. Во взрослом организме на долю кортикальной кости приходится 4 кг, т.е. 80% ( в скелетной системе), тогда как губчатая кость составляет 20% и весит в среднем 1 кг.

8. Весь объем скелетной массы у взрослого человека составляет примерно 0.0014 м³ (1400000 мм³) или 1400 см³ (1.4 литра).

9. Поверхность кости представлена периостальной и эндостальной поверхностями – суммарно порядка 11,5 м² ( 11500000 мм²).

10. Периостальная поверхность покрывает весь внешний периметр кости и составляет 4.4% грубо 0,5 м² ( 500000 мм²) всей поверхности кости.

11. Внутренняя (эндостальная) поверхность состоит из трех составляющих – 1) внутрикортикальная поверхность (поверхность Гаверсовых каналов), которая составляет 30.4% или грубо 3,5 м² (3500000 мм²); 2) поверхность внутренней стороны кортикальной кости порядка 4.4% или грубо 0,5 м² ( 500000 мм²) и 3) поверхность трабекулярного компонента губчатой кости 60.8% или грубо 7 м² ( 7000000 мм²).

12. Губчатая кость 1 гр. в среднем имеет поверхность 70 см² (70000 см² : 1000 гр.), тогда как кортикальная кость 1 гр. имеет порядка 11.25 см² [(0.5+3.5+0.5) х 10000 см² : 4000 гр.], т.е. в 6 раз меньше. По мнению других авторов это соотношение может составлять 10 к 1.

13. Обычно при нормальном обмене веществ 0.6% кортикальной и 1.2% губчатой костной поверхности подвергается разрушению (резорбции) и, соответственно, 3% кортикальной и 6% губчатой костной поверхности вовлечены в формирование новой костной ткани. Остальная костная ткань (более 93% её поверхности) находится в состоянии отдыха или покоя.

Зрелые клетки костной ткани

КОСТНАЯ ТКАНЬ , один из видов соединительной ткани; твёрдая [твердая] обызвествленная ткань, входящая в состав кости . Развивается из мезенхимы. Состоит из клеток и межклеточного (основного) вещества. К. т. содержит 3 вида клеточных элементов: остеобласты, остеоциты и остеокласты.

Остеобласты — клетки, из к-рых развивается К. т., встречаются в участках её [ее] новообразования, роста или восстановления; синтезируют коллаген. Они характеризуются хорошо развитой гранулярной цитоплазматич. сетью; богаты щелочной фосфатазой. Остеоциты — дифференцированные отростчатые клетки сформировавшейся К. т. Их тела лежат в лакунах обызвествлённого [обызвествленного] основного вещества, а тонкие отростки — в особых костных канальцах, пронизывающих всё [все] межклеточное вещество К. т. (рис.1).

Остеокласты — многоядерные гигантские клетки, участвующие в резорбции межклеточного вещества. В их цитоплазме много лизосом, богатых гидроли-тич. ферментами типа кислой фосфатазы. Главный компонент межклеточного вещества — коллагеновые волокна. В зависимости от их расположения различают грубоволокнистую и пластинчатую К. т. В грубоволокнистой ткани, встречающейся у зародышей и при регенерации кости, беспорядочно расположенные волокна образуют грубые пучки. В пластинчатой К. т. сформированы костные пластинки, содержащие тонкие параллельно ориентированные фибриллы. Из этой ткани построено компактное и губчатое вещество костей. В компактном веществе костные пластинки располагаются в определённом [определенном] порядке, образуя сложные системы (рис. 2).

Осн. структурная единица компактного вещества трубчатых костей — остеоны — системы концентрически наслоённых [наслоенных] костных пластинок вокруг центрального, или Гаверсова, канала, в к-ром располагаются кровеносные сосуды и нервные волокна (рис. 3). Между остеонами расположены вставочные системы пластинок — остатки старых разрушенных остеонов. На внутренней и наружной поверхностях кости образуется система непрерывных пластинок, окаймляющих всю область компактного вещества — наружные и внутренние общие системы костных пластинок. К. т. в организме осуществляет функцию опоры и маханич. защиты, а также является депо кальциевых солей. К. т. способна к регенерации . Высокая регенеративная способность К. т. трубчатых костей обеспечивается периостом. Пластинчатые кости регенерируют значительно хуже.

Лит.: Иванов И. Ф., Ковальский П. А., Цитология, гистология, эмбриология, 3 изд., М., 1976.

Ссылка на основную публикацию
Современные тренды финансового рынка Анохин Вестник НГУЭУ
Анохин николай валентинович Анохин Н.В., Попова Т.А., Протас Н.Г. Современные тренды финансового рынка. Вестник НГУЭУ. 2019;(1):152-160. For citation: Anokhin N.V.,...
Совместимость Афобазола с алкоголем �� можно или нет
Можно ли принимать Афобазол с алкоголем Афобазол относится к группе анксиолитических препаратов и имеет противотревожное и легкое стимулирующее влияние. Действие...
Совместимы ли свечи Полижинакс и алкоголь
Свечи Полижинакс и алкоголь: сочетание лекарственного препарата и спиртного Полижинакс – антибиотик с широким спектром действия. Он выпускается в виде...
Совсем не страшный «моллюск» — НЦЗД
Контагиозный моллюск James G. H. Dinulos , MD, Geisel School of Medicine at Dartmouth Last full review/revision July 2018 by...
Adblock detector